by ANew
Last Updated April 15, 2019 10:20 AM

This is my first question on this side, so please don't mind if not everything is correct :)

I'm currently trying to understand the Wilcoxon-Rank-Test/Mann-Whitney-Wilcoxon Test, but it got me kind of confused. As far as I understood it is to test whether the null hypothesis $F_X = F_Y$ can be rejected at level $\alpha$, where $F_X$ is the cumulative distribution of the random variable X and same for Y.

Now here's the problem: Mostly it is assumed that the cumulative distributions are continuous. The test statistic, the distribution of the rank vector and so on are derived based on that assumption. In case the cumulative distribution are not continuous I don't know why we apparently can get the same statistics. I hope what I've been telling was right, I'm just very confused at this point. My question here is if anyone has a good source which can help me understand my problem, since I didnt find any proper sources. Or maybe anyone could briefly explain how the test statistic is derived when we have continuous data or ordinal data.

Thank you!

Updated July 06, 2018 09:20 AM

Updated June 21, 2017 02:20 AM

- Serverfault Query
- Superuser Query
- Ubuntu Query
- Webapps Query
- Webmasters Query
- Programmers Query
- Dba Query
- Drupal Query
- Wordpress Query
- Magento Query
- Joomla Query
- Android Query
- Apple Query
- Game Query
- Gaming Query
- Blender Query
- Ux Query
- Cooking Query
- Photo Query
- Stats Query
- Math Query
- Diy Query
- Gis Query
- Tex Query
- Meta Query
- Electronics Query
- Stackoverflow Query
- Bitcoin Query
- Ethereum Query