Sufficient Statistic of Uniform $(-\theta,0)$

by Pedros   Last Updated July 12, 2019 06:19 AM

Let $X_1, ... , X_n$ be i.i.d random variables Uniform $(-\theta,0)$ , with $\theta > 0$ parameter

\begin{align}f_{\theta}(x_1,x_2,\cdots,x_n)&=\prod_{i=1}^nf(x_i;\theta) \\&=\frac{1}{(\theta)^n}\mathbf1_{-\theta<x_1,\cdots,x_n<0} \\&=\frac{1}{(\theta)^n}\mathbf1_{(x_{(1)}\ge-\theta)}\mathbf1_{(x_{(n)}\le0)} \end{align}

So can we conclude that the sufficient statistic for $-\theta $ so for $\theta $ too is $X_{(1)}$.

Also that the sufficient statistic for $\theta $ is $-X_{(1)}$. ??

Thus, both $X_{(1)}$ and $-X_{(1)}$ are sufficient statistics for $\theta $ ?



Related Questions


Updated July 12, 2019 06:19 AM

Updated July 06, 2018 21:19 PM

Updated March 13, 2019 09:19 AM

Updated March 19, 2017 19:19 PM

Updated March 29, 2015 06:06 AM