Proof of the matrix identity $\det\begin{pmatrix}A&B\\B&A\end{pmatrix}=\det(A+B)\det(A-B)$

by glS   Last Updated August 13, 2019 18:20 PM

The Wikipedia page about the determinant mentions the following matrix identity $$\det\begin{pmatrix}A&B\\B&A\end{pmatrix}=\det(A+B)\det(A-B),$$ valid for squared matrices $A$ and $B$ of the same size.

How is this result proved?



Answers 1


$$ \left( \begin{array}{cc} I&I \\ 0&I \\ \end{array} \right) \left( \begin{array}{cc} A&B \\ B&A \\ \end{array} \right) \left( \begin{array}{cc} I& -I \\ 0 &I \\ \end{array} \right) = \left( \begin{array}{cc} A+B& 0 \\ B& A-B \\ \end{array} \right) $$

Will Jagy
Will Jagy
August 13, 2019 18:15 PM

Related Questions


Updated March 17, 2017 18:20 PM

Updated March 18, 2017 05:20 AM

Updated November 26, 2017 11:20 AM