# Prediction for poisson model in R

by Mary   Last Updated March 14, 2019 20:19 PM

I am fitting a `glm` model:

`model_poisson<- glm(y~X, family="poisson"`)

Where X is a matrix of 5 coloums in which a log trasnformation has been applied (`X<- log(X+0.0001)`) since the data inside were extremely big.

``````Call:
glm(formula = y ~ X, family = "poisson")

Deviance Residuals:
Min       1Q   Median       3Q      Max
-298.83   -44.30   -12.06    29.77  1195.29

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept)        3.733e+00  5.894e-04  6333.9   <2e-16 ***
Xfemale            5.182e-01  7.667e-05  6759.6   <2e-16 ***
Xmale              9.882e-03  4.329e-05   228.3   <2e-16 ***
Xo                 2.170e-01  8.620e-05  2517.5   <2e-16 ***
Xs                 7.965e-02  4.736e-05  1681.8   <2e-16 ***
Xt                 3.994e-02  4.539e-05   880.1   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 170764926  on 4942  degrees of freedom
Residual deviance:  36935043  on 4937  degrees of freedom
AIC: 36982563

Number of Fisher Scoring iterations: 6
``````

How can I read the estimated coefficients?

I need also to access this model throught prediction, I have to fit the model on 80% of the data and test it on the other 20%.

`````` ndata <- length(y)
ntraining <- ceiling(0.8*ndata)
ntest <- ndata-ntraining
training_indices<- sample(1:ndata, ntraining, replace=FALSE)
training_m <- m[training_indices]
training_X<- X[training_indices, ]
training_X<- log(training_X+0.00001)
test_set <- m[-training_indices]
test_X<- X[-training_indices, ]
test_X<-as.data.frame(test_X)
``````

Hence my model is:

``````model_poisson_training<- glm(training_m ~ training_X, family="poisson")
summary(model_poisson_training)
coef.poisson<-model_poisson_training\$coefficients
``````

How can I use the test set?

Tags :

## Related Questions

Updated April 23, 2015 00:08 AM

Updated March 07, 2017 13:19 PM

Updated March 27, 2018 10:19 AM

Updated April 30, 2018 11:19 AM

Updated August 07, 2018 17:19 PM