Installing TensorFlow on ubuntu16.04 and lots of warnnings

by Bito forSing   Last Updated October 09, 2019 14:02 PM

Environment : Ubuntu 16.04 / tensorflow 1.14.0/ python 3.5.3

I installed TensorFlow using this command.

sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl

This is the result of it.

DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
WARNING: The directory '/home/hanbit-o/.cache/pip/http' or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
WARNING: The directory '/home/hanbit-o/.cache/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
Collecting tensorflow==0.7.1 from https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl
  Downloading https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl (13.8MB)
Requirement already satisfied, skipping upgrade: wheel in /usr/local/lib/python2.7/dist-packages (from tensorflow==0.7.1) (0.33.4)
Requirement already satisfied, skipping upgrade: protobuf==3.0.0b2 in /usr/local/lib/python2.7/dist-packages (from tensorflow==0.7.1) (3.0.0b2)
Requirement already satisfied, skipping upgrade: six>=1.10.0 in /usr/lib/python2.7/dist-packages (from tensorflow==0.7.1) (1.10.0)
Requirement already satisfied, skipping upgrade: numpy>=1.8.2 in /home/hanbit-o/.local/lib/python2.7/site-packages (from tensorflow==0.7.1) (1.16.4)
Requirement already satisfied, skipping upgrade: setuptools in /usr/lib/python2.7/dist-packages (from protobuf==3.0.0b2->tensorflow==0.7.1) (20.7.0)
Installing collected packages: tensorflow
  Found existing installation: tensorflow 0.7.1
    Uninstalling tensorflow-0.7.1:
      Successfully uninstalled tensorflow-0.7.1
Successfully installed tensorflow-0.7.1

in this time there is a warning of python2

Actually, I want to use TensorFlow at the python3 I think because of installing TensorFlow at python2. There are lots of comments on the prompt.

Python 3.5.3 (default, Aug 28 2019, 20:35:32) 
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])
>>> 

and i tried to ignore it.

>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2019-10-09 21:40:31.902027: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-10-09 21:40:31.926393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3398000000 Hz
2019-10-09 21:40:31.929440: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x42f31d0 executing computations on platform Host. Devices:
2019-10-09 21:40:31.929480: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
>>> sess.run(hello)
]b'Hello, TensorFlow!'
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> sess.run(a+b)
2019-10-09 21:41:28.143676: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
42

It is works(?), and why there lots of warnning?



Answers 1


First, to use tensorflow with python 3, you have to install it using pip3.
You can simply install it by running the following command pip3 install tensorflow, you don't need to use sudo.

Second, you have the warnings because of the numpy version, you probably have numpy version (1.17 or 1.15) that is not supported by the version of tensorflow that you installed.
So to solve these warnings, you can:

  • Install tensorflow 2.0 which works fine with the latest version of numpy. The command is pip3 install --upgrade tensoflow

OR

  • Downgrade the numpy to 1.13.3<=numpy<=1.14.5 and keep the current version of tensorflow. The cammand is pip3 install nupmpy==1.14
singrium
singrium
October 09, 2019 13:57 PM

Related Questions


Updated August 26, 2019 17:02 PM

Updated August 21, 2019 01:02 AM

Updated October 10, 2019 14:02 PM

Updated May 08, 2019 10:02 AM

Updated May 16, 2019 09:02 AM