by Skyfall
Last Updated January 11, 2019 11:20 AM

(https://i.stack.imgur.com/HeEU9.gif)

Sum from n=1 to infinity of n!*e^n/n^n

Where e is Euler's number.

Recently on calculus class we were covering convergence tests and my group got stuck with this infinite series. Our calculus teacher told us that it diverges but he doesn't see any elementary way or simple test to prove it. He told us something about Euler's Gamma function and said that he knows it diverges because of the Stirling's formula but this is not quite our level yet.

I tried to think about it myself but I established only that this is some kind of an edge case. We could generalize the problem to series of n!*a^n/n^n. Then, from the ratio test we know that it converges for a e. For a=e the test is inconclusive. I've also tried to compare it with various divergent series, but nothing worked...

Does anybody have any idea for a simple solution?

Updated January 16, 2019 12:20 PM

Updated October 29, 2018 22:20 PM

Updated March 27, 2017 08:20 AM

Updated January 01, 2018 19:20 PM

- Serverfault Query
- Superuser Query
- Ubuntu Query
- Webapps Query
- Webmasters Query
- Programmers Query
- Dba Query
- Drupal Query
- Wordpress Query
- Magento Query
- Joomla Query
- Android Query
- Apple Query
- Game Query
- Gaming Query
- Blender Query
- Ux Query
- Cooking Query
- Photo Query
- Stats Query
- Math Query
- Diy Query
- Gis Query
- Tex Query
- Meta Query
- Electronics Query
- Stackoverflow Query
- Bitcoin Query
- Ethereum Query