Calculus - indefinite integration

by user579689   Last Updated August 13, 2019 21:20 PM

The integral in which I am interested in is $$\int x(x^3+1)^{33}\mathrm{d}x$$

I tried to solve by substituting $x^2 = t$, but it didn't help. I find a solution by expanding it with the help of binomial expansion. Can anyone help me with any other method like substitution, by parts?



Answers 2


Repeat the integral-by-parts below 33 times:

$$I_0=\frac{1}{2}\int (x^3+1)^{33} d(x^2) = \frac{1}{2}x^2 (x^3+1)^{33} -\frac{99}{2}I_1$$

$$I_1= \int x^4 (x^3+1)^{32} dx = \frac{1}{5}x^5 (x^3+1)^{32 } -\frac{96}{5}I_2 $$

$$I_2=\int x^7 (x^3+1)^{31} dx = ... $$

$$...$$

$$I_{100} = \int x^100 dx$$

Quanto
Quanto
August 13, 2019 21:17 PM

This is not necessarily any easier than expanding using the Binomial theorem, but it's a different way to approach it which you may find useful.

For any $n \in \mathbb{N}$, let

$$f(n) = \int x(x^3 + 1)^n dx \tag{1}\label{eq1}$$

Using integration by parts, where $u(x) = (x^3 + 1)^n$ so $d(u(x)) = 3nx^2(x^3 + 1)^{n-1}dx$, and $d(v(x)) = xdx$ so $v(x) = \frac{x^2}{2}$, you get

$$\begin{equation}\begin{aligned} f(n) & = \frac{x^2}{2}(x^3 + 1)^n - \frac{3n}{2} \int x^4(x^3 + 1)^{n-1} dx \\ & = \frac{x^2}{2}(x^3 + 1)^n - \frac{3n}{2} \int x(x^3 + 1 - 1)(x^3 + 1)^{n-1} dx \\ & = \frac{x^2}{2}(x^3 + 1)^n - \frac{3n}{2} \int \left(x(x^3 + 1)^n - x(x^3 + 1)^{n-1}\right) dx \\ & = \frac{x^2}{2}(x^3 + 1)^n - \frac{3n}{2} \left(f(n) - f(n-1)\right) \end{aligned}\end{equation}\tag{2}\label{eq2}$$

This leads to the recursive equation

$$\begin{equation}\begin{aligned} \left(1 + \frac{3n}{2}\right)f(n) & = \frac{x^2}{2}(x^3 + 1)^n + \frac{3n}{2}f(n-1) \\ f(n) = \frac{x^2}{2 + 3n}(x^3 + 1)^n + \frac{3n}{3n + 2}f(n-1) \end{aligned}\end{equation}\tag{3}\label{eq3}$$

You can determine what f(0) is and then use \eqref{eq3} to determine each of the rest of the $f$ values up to $f(33)$.

John Omielan
John Omielan
August 13, 2019 21:19 PM

Related Questions


Updated January 28, 2019 21:20 PM

Updated November 17, 2018 14:20 PM

Updated August 09, 2017 10:20 AM

Updated January 20, 2019 21:20 PM

Updated March 15, 2016 08:08 AM