# Align many matrices and operations so it's more beautiful

by jubibanna   Last Updated May 15, 2019 19:23 PM

I have the following matrices, I'd like to align them under each other more beautifully. Can anyone recommend a good way to do this?

$\left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ -1 & 2 & 0 & 4z-5 \\ 1 & 0 & -1 & z-3 \\ 1 & 2 & 0 & 8z-7 \end{matrix}\right] R_2-(-1)R_1->R_2 \left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 3 & 1 & 10z-7 \\ 1 & 0 & -1 & z-3 \\ 1 & 2 & 0 & 8z-7 \end{matrix}\right] R_3-1R_1->R_3$ \bigskip

$\left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 3 & 1 & 10z-7 \\ 0 & -1 & -2 & -5z-1 \\ 1 & 2 & 0 & 8z-7 \end{matrix}\right] R_4-1R_1->R_4 \left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 3 & 1 & 10z-7 \\ 0 & -1 & -2 & -5z-1 \\ 0 & 1 & -1 & 2z-5 \end{matrix}\right] R_2/(3)->R_2$ \bigskip

$\left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\ 0 & -1 & -2 & -5z-1 \\ 0 & 1 & -1 & 2z-5 \end{matrix}\right] R_3-(-1)R_2->R_3 \left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\ 0 & 0 & \frac{-5}{3} & \frac{-5z-10}{3} \\ 0 & 1 & -1 & 2z-5 \end{matrix}\right] R_4-1R_2->R_4$ \bigskip

$\left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\ 0 & 0 & \frac{-5}{3} & \frac{-5z-10}{3} \\ 0 & 0 & \frac{-4}{3} & \frac{-4z-8}{3} \end{matrix}\right] R_3/((-5)/3)->R_3 \left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\ 0 & 0 & 1 & z+2 \\ 0 & 0 & \frac{-4}{3} & \frac{-4z-8}{3} \end{matrix}\right] R_4-((-4)/3)R_3->R_4$ \bigskip

$\left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\ 0 & 0 & 1 & z+2 \\ 0 & 0 & 0 & 0 \end{matrix}\right] R_2-(1/3)R_3->R_2 \left[\begin{matrix} 1 & 1 & 1 & 6z-2 \\ 0 & 1 & 0 & 3z-3 \\ 0 & 0 & 1 & z+2 \\ 0 & 0 & 0 & 0 \end{matrix}\right] R_1-1R_3->R_1$ \bigskip

$\left[\begin{matrix} 1 & 1 & 0 & 5z-4 \\ 0 & 1 & 0 & 3z-3 \\ 0 & 0 & 1 & z+2 \\ 0 & 0 & 0 & 0 \end{matrix}\right] R_1-1R_2->R_1 \left[\begin{matrix} 1 & 0 & 0 & 2z-1 \\ 0 & 1 & 0 & 3z-3 \\ 0 & 0 & 1 & z+2 \\ 0 & 0 & 0 & 0 \end{matrix}\right]$

$\left[\begin{matrix} x_1 & = & 2z-1 \\ x_2 & = & 3z-3 \\ x_3 & = & z+2 \end{matrix}\right]$

Tags :

## Related Questions

Updated February 23, 2019 10:23 AM

Updated March 21, 2016 08:09 AM

Updated September 19, 2018 12:23 PM

Updated March 20, 2017 02:23 AM

Updated June 11, 2017 15:23 PM