Align many matrices and operations so it's more beautiful

by jubibanna   Last Updated May 15, 2019 19:23 PM

I have the following matrices, I'd like to align them under each other more beautifully. Can anyone recommend a good way to do this? enter image description here

$
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
-1 & 2 & 0 & 4z-5 \\
1 & 0 & -1 & z-3 \\
1 & 2 & 0 & 8z-7
\end{matrix}\right]
R_2-(-1)R_1->R_2 
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 3 & 1 & 10z-7 \\
1 & 0 & -1 & z-3 \\
1 & 2 & 0 & 8z-7
\end{matrix}\right]
R_3-1R_1->R_3
$ \bigskip

$
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 3 & 1 & 10z-7 \\
0 & -1 & -2 & -5z-1 \\
1 & 2 & 0 & 8z-7
\end{matrix}\right]
R_4-1R_1->R_4
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 3 & 1 & 10z-7 \\
0 & -1 & -2 & -5z-1 \\
0 & 1 & -1 & 2z-5
\end{matrix}\right]
R_2/(3)->R_2
$ \bigskip

$
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\
0 & -1 & -2 & -5z-1 \\
0 & 1 & -1 & 2z-5
\end{matrix}\right]
R_3-(-1)R_2->R_3
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\
0 & 0 & \frac{-5}{3} & \frac{-5z-10}{3} \\
0 & 1 & -1 & 2z-5
\end{matrix}\right]
R_4-1R_2->R_4
$ \bigskip

$
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\
0 & 0 & \frac{-5}{3} & \frac{-5z-10}{3} \\
0 & 0 & \frac{-4}{3} & \frac{-4z-8}{3}
\end{matrix}\right]
R_3/((-5)/3)->R_3
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\
0 & 0 & 1 & z+2 \\
0 & 0 & \frac{-4}{3} & \frac{-4z-8}{3}
\end{matrix}\right]
R_4-((-4)/3)R_3->R_4
$ \bigskip

$
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & \frac{1}{3} & \frac{10z-7}{3} \\
0 & 0 & 1 & z+2 \\
0 & 0 & 0 & 0
\end{matrix}\right]
R_2-(1/3)R_3->R_2
\left[\begin{matrix}
1 & 1 & 1 & 6z-2 \\
0 & 1 & 0 & 3z-3 \\
0 & 0 & 1 & z+2 \\
0 & 0 & 0 & 0
\end{matrix}\right]
R_1-1R_3->R_1
$ \bigskip

$
\left[\begin{matrix}
1 & 1 & 0 & 5z-4 \\
0 & 1 & 0 & 3z-3 \\
0 & 0 & 1 & z+2 \\
0 & 0 & 0 & 0
\end{matrix}\right]
R_1-1R_2->R_1
\left[\begin{matrix}
1 & 0 & 0 & 2z-1 \\
0 & 1 & 0 & 3z-3 \\
0 & 0 & 1 & z+2 \\
0 & 0 & 0 & 0
\end{matrix}\right]
$ 

$
\left[\begin{matrix}
x_1 & = & 2z-1 \\
x_2 & = & 3z-3 \\
x_3 & = & z+2
\end{matrix}\right]
$


Related Questions


Updated February 23, 2019 10:23 AM

Updated March 21, 2016 08:09 AM

Updated September 19, 2018 12:23 PM

Updated March 20, 2017 02:23 AM

Updated June 11, 2017 15:23 PM